BT ZRKRNE
U

TENCENT SECURITY XUANWU LAB

Al Web Crawler Security White Paper

Author: Guancheng Li. Zheng Wang @ Tencent Xuanwu Lab

Abstract

Al application architectures are evolving from simple offline LLM conversations to online,
internet-connected Agents capable of invoking tools and autonomously decomposing tasks.
Whether handling basic tasks like "search the web and summarize the answer" or executing
complex automated task chains such as "search for company information, then query stock
prices, and finally provide investment recommendations,” browsers are increasingly
integrated into server-side systems to enable real-time internet connectivity and content
extraction.

However, relocating browsers—which were originally designed to run on the client side—to
server-side environments introduces an architectural mismatch that creates significant
security risks:

Blurred Trust Boundaries: Browsers are software that parses untrusted external code (such
as JavaScript and DOM) and frequently contains high-severity vulnerabilities. When deployed
on servers that may have direct access to enterprise internal networks and critical business
systems, they become prime entry points for external attackers seeking to penetrate internal
networks.

Weakened Security Posture: Server-side browsers often suffer from delayed patch updates
and overly permissive runtime privileges. Some vendors disable native sandbox mechanisms
to ensure compatibility, resulting in security protections that are often weaker than those of
typical client-side browsers.

Greater Attack Impact: Once a browser is compromised, attackers can not only steal task
data or tamper with returned results to "poison” downstream decision-making processes—
they can also leverage shared architectures to laterally affect other products and users, or use
the compromised browser as a pivot point to move laterally and attack other core internal
systems.

Our research published at Black Hat also confirmed that the crawlers of multiple Al products

have remote code execution risks. Given that server-side browsers have become critical risk
points in Al server infrastructure, and that the industry currently lacks systematic protection
standards, this white paper aims to fill that gap. We provide a detailed analysis of the risk
characteristics in this scenario and propose a defense framework centered on "static attack
surface reduction + dynamic behavior isolation." This framework is designed to help
enterprise security leaders and technical teams achieve secure deployment and operation of
server-side browsers. We have open-sourced this solution on GitHub, hoping to help the
industry improve the overall security posture of server-side browsers.

Code Repository: https://github.com/XuanwulLab/SEChrome

https://blackhat.com/eu-25/briefings/schedule/index.html#ai-searchs-dark-side-how-we-turned-ais-web-browsing-into-a-gateway-for-targeting-1b-users-49085
https://github.com/XuanwuLab/SEChrome

=Rl AT A v

=
v

W=
TENCENT SECURITY XUANWU LAB

1. The Changing Threat Landscape for Browsers in Al

Systems

When you launch a browser instance, you are not starting a simple web browsing tool—you
are launching a "micro operating system" composed of the V8 engine, WebRTC components,
a PDF reader, dozens of audio/video codecs, and a complex rendering engine. A vulnerability
in any single component could lead to remote code execution, which is why browsers have
consistently ranked among software with the highest number of severe vulnerabilities and the
highest proportion of exploitable vulnerabilities.

In the Al era, browsers have transformed from user gateways to the web into foundational
components supporting Al business operations. We are placing a browser—whose
complexity far exceeds that of typical server-side components and which frequently contains
vulnerabilities—onto high-value servers. This change is not merely a shift in deployment
location; it represents a fundamental role change that ultimately alters the threat landscape
for browsers on the server side.

1.1 Changes in the Attack Landscape

From an attacker's perspective, the transformation of the browser's role introduces deep
structural risks. This change can be summarized across four dimensions:

Failure of the Patch + Sandbox Defense Model: Traditional browser security relies heavily
on "automatic updates" and "sandbox isolation." However, on the server side, some
developers disable automatic updates to maintain environment consistency, while others
disable sandboxes to accommodate container architectures. This deviation in operational
environments directly undermines traditional defense systems, making N-day vulnerabilities
a persistent threat.

Expanded Attack Impact: Traditional browsers affect only individual endpoints. On the server
side, browsers are shared components serving multiple users. Once attackers break through,
they can affect other users through the shared environment—for example, by manipulating
search results for multiple users simultaneously.

More Severe Attack Consequences: Traditional browsers serve humans, but now they serve
Al. Attackers' goals are no longer limited to gaining access; they can also "poison” Al
knowledge inputs by tampering with web content. In automated "search-decide-execute"
chains, such data-layer attacks can directly manipulate Al's final decisions. Furthermore,
without proper isolation in server-side environments, attackers can use compromised
browsers as pivot points to move laterally into core internal networks, amplifying the damage.
Increased Attacker Motivation: Due to the factors above, server-side browsers have become
shortcuts to enterprise core data and business logic. Compared to attacking individual users,
compromising server-side browsers offers extremely high returns, motivating attackers to
invest more resources (such as purchasing 0-day exploits) to specifically breach these

BT ZRKRNE
U

TENCENT SECURITY XUANWU LAB

defenses.

1.2 Changes in the Defense Landscape

From a defensive perspective, this role change also creates a mismatch in defense strategies.
The core principle of server-side security is the principle of least privilege—components
should possess only the minimum capabilities required to complete specific tasks. However,
existing browsers are designed for web compatibility and enable WebGL, WebRTC, and
various functional interfaces by default. This "default-open" approach contradicts the strict
access controls required on the server side, resulting in an expanded attack surface.
Additionally, modern server-side security typically requires high configurability and
operability—security policies should be definable and auditable like infrastructure code.
Unfortunately, browsers often operate as opaque black boxes, lacking standardized server-
side configuration interfaces and structured security audit logs. This makes it difficult for
operations teams to constrain browser behavior boundaries as they would configure Nginx,
and prevents them from gaining sufficient visibility when attacks occur.

Therefore, we must reassess the risks of server-side browsers and establish a new browser
security defense practice that meets the requirements of server-side security operations.

2. Security Risk Assessment for Al Server-Side

Browsers

This section provides a systematic reassessment of server-side browser security risks.

2.1 Risk 1: Delayed Patch Updates and Incorrect Sandbox

Configuration

Client-side browsers rely on mature security mechanisms: automatic updates with rapid patch
deployment, native sandboxes, and multi-process isolation. Chrome on desktop typically
pushes updates to most users within days of vulnerability disclosure.

Server-side browsers operate differently. After analyzing Al server-side browser components
from multiple vendors, we observed two widespread issues:

Sandbox Configuration Issues: Chrome's user-space sandbox relies on Linux namespaces
and seccomp mechanisms. In container environments, if runtime configurations are improper
(such as not granting necessary Linux Capabilities or not correctly setting seccomp policies),
Chrome will fail to start. To quickly resolve startup failures, many teams add the --no-sandbox
parameter to bypass restrictions, but this actually disables the browser's most critical security
boundary, creating serious risks. Additionally, some container platforms do not grant the
system permissions required for Chrome's sandbox by default, as a precaution against

BT ZRKRNE
U

TENCENT SECURITY XUANWU LAB

container escape vulnerabilities.

Slow Version Updates: Some teams prefer using older, long-validated image versions due
to concerns that version updates might cause changes in page rendering behavior or
compatibility issues.

According to Google Project Zero statistics, Chrome has fixed over 1,600 security
vulnerabilities between 2020 and 2025, including multiple zero-day vulnerabilities exploited
in the wild. CVE database records show that Chrome's V8 engine, Blink rendering engine, and
WebAssembly runtime are high-frequency vulnerability areas—these same components are
used in server-side browsers.

Disabling sandboxes and failing to update versions promptly expose browsers to N-day
vulnerability threats, leading to remote code execution risks in Al server-side browsers.

2.2 Risk 2: Multi-User, Multi-Product Shared Architecture

Amplifies Vulnerability Impact

In client-side scenarios, a browser instance serves only one user, naturally limiting the scope
of any attack.

In server-side Al systems, browsers typically run as resource pools: simultaneously serving
multiple Al products, being reused by multiple task queues, supporting query requests from
multiple users, and running continuously in long-lived containers.

Under this architecture, if a malicious page triggers and successfully exploits a vulnerability,
attackers may interfere with multiple tasks being processed or awaiting processing, poison
LLM data inputs to control behavior, and create cross-user or even cross-product impacts.

2.3 Risk 3: Inadequate Internal Network Isolation Amplifies

Attack Damage

In client-side scenarios, browsers run on users' personal computers, which are typically
network-isolated from enterprise production systems.

In server-side scenarios, browsers are part of business logic and may be deployed in the same
cluster or network segment as business services. Without dedicated network isolation policies,
browsers and internal network resources (databases, task scheduling systems, model
inference nodes, internal APIs) may be mutually accessible.

Once a browser is compromised, attackers will use the node as a foothold: scanning internal
services, reading credentials from environment variables, and accessing metadata services to
obtain cloud platform permissions. The impact extends far beyond the browser itself.

2.4 Risk 4: How Web Content Is Used Amplifies Attack Damage

Server-side browsers are not just data retrieval tools—they are the "eyes” and "ears" of Al

BT ZRKRNE
U

TENCENT SECURITY XUANWU LAB

models. Attackers can embed Prompt Injection payloads or malicious instructions in web
pages. When browsers fetch page content and feed it to downstream models, this may induce
Al to output incorrect results, leak sensitive information, or even execute unintended
automated operations. Such attacks transcend traditional software vulnerability layers and
can directly poison Al decision logic.

2.5 Risk 5: High Attack Returns Increase Attacker Willingness

to Use High-Value Exploits

In Al scenarios, the potential value of server-side browsers has significantly increased. Client-
side attacks typically only obtain data and permissions at the individual endpoint level, while
server-side browsers are deployed closer to business systems. Once the browser is
compromised, attackers can further access internal interfaces, configuration information,
business data, or other services. Therefore, attackers are likely willing to invest in more
sophisticated attack methods, such as using 0-day exploits.

Thus, "we're using the latest browser version, so we don't have security issues” is a dangerous
misconception. The latest version mitigates N-day vulnerabilities but cannot eliminate 0-day
vulnerabilities—this is why we emphasize introducing "defense in depth": assuming that
unknown vulnerabilities may always exist within browsers and designing "buffer zones" in
advance for when defenses are breached.

3. Attack Paths and Real-World Cases

To effectively defend against server-side browser threats, we must first understand the
penetration path from an attacker's perspective. Through post-incident analysis of real-world
cases, we have mapped out a typical kill chain targeting server-side browsers and selected
four representative real-world cases for analysis.

3.1 Server-Side Browser Kill Chain

Attacks targeting server-side browsers typically follow five stages:

Reconnaissance: Attackers first identify functionality that can trigger server-side HTTP
requests. Beyond obvious "web scraping” and "URL preview" features, hidden entry points
must also be considered, such as image loading in Markdown rendering, PDF generation
services, cache warming interfaces, or backend crawlers.

Evasion: To bypass URL allowlists or script filters deployed by systems, attackers use
techniques such as 302 redirects, DNS rebinding, protocol parsing discrepancies, or specially
crafted HTML structures to evade checks and redirect requests to attacker-controlled
websites.

Fingerprinting: HTTP User-Agent headers are easily spoofed, so attackers do not trust them.

=Rl AT A v

=
v

W=
TENCENT SECURITY XUANWU LAB

Instead, they determine the specific browser kernel version by detecting browser support for
specific APIs, CSS properties, or JavaScript syntax features.

Exploitation: Once the version is confirmed, attackers search vulnerability databases for O-
day/N-day vulnerabilities affecting that version and deploy corresponding exploit code.
When the server-side browser parses the malicious page, the vulnerability is triggered and
attackers gain code execution privileges.

Post-Exploitation: If the browser sandbox is enabled, attackers must use sandbox escape
vulnerabilities to break out. If the sandbox is disabled or misconfigured, attackers directly gain
shell access on the host, enabling them to probe internal network topology, read sensitive
configuration files (such as cloud service access keys), or use the foothold to attack internal
databases and other microservices.

3.2 Four Representative Cases

We conducted testing on several products that integrate server-side browsers and found that
multiple products had remote code execution (RCE) security risks outside the sandbox. The
affected products collectively serve over one billion server-side users, covering products from
multiple leading technology companies.

We present four representative cases to provide a comprehensive understanding of this
attack surface.

Case 1: Bypassing Allowlists via URL Redirects to Achieve Remote Code
Execution

Reconnaissance: An Al search product implemented an access allowlist policy, permitting the
browser to access only a preset list of trusted websites.

Evasion: We discovered that certain large search sites on the allowlist create intermediate
redirect links for indexed websites, such as xx.com/link?url=. We constructed a request to
access an allowlisted site, but with URL parameters pointing to our controlled server. The
system verified the initial address was on the allowlist and permitted the request. After the
browser opened the trusted site, it read the URL parameters and automatically redirected to
our malicious page.

Fingerprinting: After successfully bypassing the allowlist via redirect, our malicious page ran
in the server-side browser. We detected that the backend browser was using an older version,
Chrome/120.

Exploitation: With the version confirmed, we exploited a publicly disclosed N-day
vulnerability for that version combined with a V8 sandbox bypass vulnerability. Since the
service did not enable the browser sandbox, we successfully gained control of the server after
triggering the vulnerability.

Case 2: Chaining Multiple Browser Features to Achieve Remote Code
Execution

Reconnaissance: An Al product had three independent features: an Al reading feature using

=Rl AT A v

=
v

W=
TENCENT SECURITY XUANWU LAB

the latest browser version, a sharing feature that generates publicly accessible same-domain
links, and a screenshot feature with URL allowlist filtering.

Evasion: We constructed an attack path traversing all three features: first, we used the "Al
reading" feature to analyze a webpage containing malicious code, and the system embedded
the malicious content in the response page; then we "shared" the response as a public link;
finally, we requested the "screenshot feature" to render that shared page. Since the shared
link belonged to the site's own domain, it satisfied the screenshot service's allowlist
requirements, and the malicious code was successfully loaded.

Fingerprinting: When the screenshot service's browser opened the shared page, the
embedded attacker code was executed. We detected that although the Al reading feature
used a newer browser, the screenshot service's browser version was older.

Exploitation: For that older version, we tested corresponding exploit code. After achieving
shellcode execution capability, we attempted to read the /proc/self/maps file and discovered
it could not be opened, indirectly indicating that the screenshot service's browser had the
sandbox enabled. Ultimately, we exploited SSRF to access cloud metadata, demonstrating the
severity of the risk.

Case 3: Bypassing Script Execution Restrictions to Achieve Remote Code
Execution

Reconnaissance: An Al product had a feature to access URLs specified in conversations. This
feature filtered all <script> tags in web pages, intending to prevent JavaScript execution.
Evasion: JavaScript execution is not limited to <script> tags—iframe embedding and event
handlers can also trigger it. We constructed a page containing no <script> tags whatsoever,
triggering code execution via . The onerror event
handler for image load failures successfully bypassed the script filter.

Fingerprinting: After the malicious code executed, we detected that the backend browser
was running an older version, Chrome/121.

Exploitation: Based on the detected version information, we searched for and exploited a
publicly disclosed N-day vulnerability along with two V8 sandbox bypass vulnerabilities. When
using the first sandbox vulnerability, we discovered the target system had enabled pkey-
based runtime write protection for WebAssembly, preventing shellcode from being written to
WebAssembly's readable-writable-executable code region. Therefore, we used the first
sandbox bypass vulnerability to leak addresses, then used the second sandbox bypass
vulnerability to perform JIT spray to hijack program execution flow. Ultimately, combining
these three vulnerabilities, we successfully gained control of the server.

Case 4: Discovering Hidden Backend Browser Entry Points to Achieve
Remote Code Execution

Reconnaissance: An Al search product's frontend functionality rejected access to our test
URL. However, we kept our test server running, and three days later discovered access records
from that product in our logs. Investigation revealed the product had a hidden backend
indexing system that batch-fetched URLs users had queried during idle periods.

Evasion: This backend crawler was invisible to users and not documented in any product

=Rl AT A v

=
v

W=
TENCENT SECURITY XUANWU LAB

materials. Attackers did not need to directly bypass frontend real-time checks; instead, they
could leave historical records and wait for backend asynchronous fetching to enter the system.
Fingerprinting: When the backend crawler accessed our server, we confirmed it was running
an older browser kernel version, Chrome/122.

Exploitation: For this older kernel version, we deployed corresponding N-day exploit code.
Since this backend browser did not have the sandbox enabled, we ultimately successfully
executed shellcode and gained control of the server hosting the browser.

These cases expose a common problem: limitations in defensive thinking.

Enterprises often believe that adding URL allowlists provides complete protection,
overlooking the fact that allowlists are easily bypassed via redirects and blocklists are easily
evaded via obfuscation. More seriously, security visibility often misses "invisible" browser entry
points such as screenshot services and backend crawlers. Once attackers bypass the first line
of defense, the combination of "outdated browser versions" and "disabled sandboxes" often
leads to systems being directly compromised by N-day exploits. Notably, even with updates
maintained and sandboxes enabled, attackers may still choose to use 0-day exploits against
high-value systems.

Therefore, addressing server-side browser threats cannot rely solely on ad-hoc protection
schemes designed by developers—it requires a systematic defense-in-depth approach.

4. Al Server-Side Browser Defense Strategy: From

Passive Protection to Active Operations

Server-side browsers require a different defense approach than client-side browsers.
Addressing the unique characteristics of server-side environments, we break down our
defense strategy into four key dimensions:

More Proactive Defense Strategies: Client-side browsers typically rely on vendors' rapid
security updates and built-in sandbox mechanisms to counter threats. However, server-side
environments often have longer patch update cycles. Additionally, due to container or
virtualization environment constraints, browser sandboxes are frequently disabled due to
compatibility issues. This means we cannot simply rely on client-side "automatic defense"
mechanisms—we must build more proactive defenses.

Attack Surface Reduction and Least Privilege Principle: Client-side browsers enable
WebGL, WebRTC, and various sensor interfaces by default for web ecosystem compatibility.
In server-side scenarios, we should follow the Least Privilege principle: components should
possess only the minimum capabilities required to complete specific tasks. Unnecessary
browser features must be firmly disabled to prevent non-essential functional components
from being exploited by attackers.

Configurable and Operable: In client-side scenarios, browser protection mechanisms are
typically a non-configurable "black box" for users. But server-side security typically requires
high configurability and operability. Server-side solutions must allow security teams to
customize policies according to business needs rather than passively accepting preset security

=Rl AT A v

=
v

W=
TENCENT SECURITY XUANWU LAB

configurations, thereby achieving precise control over security posture.

"Assume Vulnerabilities Exist” Defense Philosophy: Since server-side browsers carry
extremely high attack value, we cannot rule out the possibility of attackers using 0-day
exploits to break through defenses. Therefore, we need to establish a defense system that
"assumes vulnerabilities exist." The focus of defense is not only preventing vulnerability
exploitation but also minimizing damage when defenses are breached.

Considering all these factors, we designed a protection solution for Al server-side browsers:
reducing exploitable attack surface through kernel streamlining, and strictly limiting the
impact scope after vulnerability exploitation through configurable file access controls and
process execution allowlist mechanisms.

4.1 Attack Surface Reduction

Server-side browser tasks are typically highly specific (such as screenshots or text extraction).
Many complex components designed to enrich human experience are not only redundant on
the server side but are also high-risk attack entry points.

Disabling Unnecessary Functional Modules

WebGL and GPU-accelerated rendering are typically unnecessary on the server side and can
be disabled via the --disable-gpu and --disable-webgl parameters.

WebRTC real-time communication functionality is typically useless in server-side scenarios
and may leak internal network IP addresses; it can be disabled via the --disable-webrtc
parameter.

PDF plugins should also be disabled if there is no explicit requirement.

The V8 engine's JIT compiler is a high-frequency vulnerability area; if performance
requirements allow, JIT can be disabled via the --jitless parameter, at the cost of reduced
JavaScript execution performance—this needs to be weighed against business scenario
requirements. Server-side browsers should not load any extensions or plugins.

According to CVE data analysis, approximately 16% of Chrome's high-severity vulnerabilities
between 2023 and 2025 were related to WebGL/GPU, and approximately 23% were related to
V8 JIT. Directly disabling these modules via startup parameters can eliminate nearly 40% of
vulnerabilities at the source.

Configuration Recommendations

Below is an example of security-oriented Chrome startup parameters; security teams can
adjust according to business needs:

=Rl AT A v

=
v
W=
TENCENT SECURITY XUANWU LAB

Basic mode settings
--headless=new
--no-first-run
--disable-crashpad

--disable-crash-reporter

Attack surface reduction (core)

--disable-gpu # Disable GPU hardware acceleration (high-risk
area)

--disable-webgl # Disable WebGL (high-risk area)
--disable-webrtc # Disable WebRTC (prevent IP leaks and P2P
attacks)

--disable-extensions # Prohibit loading any extensions
--disable-plugins # Disable PDF and other plugins

V8 engine hardening (optional, depending on performance requirements)

Disable JIT compiler—reduces JS performance but immunizes against most V8
vulnerabilities

--js-flags="--jitless"

Or disable only some optimization pipelines

--js-flags="--no-turbofan,--no-maglev"

If performance allows, adding --jitless can further reduce attack surface.

Note on Sandboxes

Avoid using the --no-sandbox parameter.

Some teams launching Chrome in containers often disable the sandbox directly to resolve
sandbox permission errors. This is an extremely dangerous practice. The correct approach is
to fix container configurations (such as adding necessary seccomp profiles or using --cap-
add SYS_ADMIN) rather than dismantling the last line of defense. Given the scarcity and high
cost of sandbox escape vulnerabilities, retaining the native sandbox provides extremely high
defensive value.

4.2 Limiting Impact After Vulnerability Exploitation

Even after reducing attack surface, given that browsers are a major source of severe
vulnerabilities, we must assume browsers will be compromised. The goal of defense in depth
is: even if the browser is compromised, attackers cannot cause actual harm—they cannot

=Rl AT A v

=
v

W=

TENCENT SECURITY XUANWU LAB

access internal networks, they cannot steal data.

We divide defense in depth into two defensive layers: the "infrastructure layer” and the
"browser runtime layer." Infrastructure layer isolation refers to solutions implemented using
isolation mechanisms provided by containers, networks, and operating systems. Browser
runtime layer isolation restricts what actions a browser can perform after being compromised
by monitoring and auditing browser process behavior.

First Line of Defense: Infrastructure Layer Isolation (Coarse-Grained
Boundaries)

Network Isolation: Browser containers should be deployed in isolated network zones,
permitted only to access the internet, with internal network resource access prohibited.
Implementation methods include using separate VPCs or subnets and restricting outbound
traffic through network policies (Kubernetes NetworkPolicy or cloud platform security groups).
Validation involves attempting to access internal services (such as metadata services, internal
databases, other business APIs) from within the browser container and confirming they are
unreachable.

Filesystem Isolation: Browsers should run in read-only mode, permitted to write only to
specific temporary directories, preventing attackers from achieving persistence by writing
scheduled tasks, SSH keys, or other configuration files. Specific measures include using a
read-only root filesystem (readOnlyRootFilesystem: true) and mounting temporary directories
as tmpfs (in-memory filesystem, cleared after container restart), ensuring the browser process
cannot access sensitive configuration files.

Instance lIsolation: Ideally, each task uses an independent browser instance, which is
destroyed after task completion. This prevents one malicious page from affecting subsequent
tasks and prevents information leakage between tasks. If performance requirements do not
permit complete instance isolation, at minimum, independent instances should be used
between different users or tasks of different security levels.

Second Line of Defense: Browser Process Behavior Control (Fine-
Grained Control)

The infrastructure layer provides external barriers, while runtime isolation plants "monitoring
probes” inside browser processes. By monitoring and auditing browser process system calls
(syscalls), we restrict its behavioral capabilities. Even if attackers successfully launch RCE
attacks against the browser, system call-level behavior control can still limit vulnerability
impact to a controllable scope. In Chapter 5, we will detail SEChrome, a protection solution
designed based on this concept.

Coordination of Two Isolation Layers

Infrastructure layer isolation and browser layer isolation complement each other. The
infrastructure layer provides coarse-grained network and resource boundaries as the outer
layer of defense in depth; the browser layer provides fine-grained behavior control,
intercepting attacks at the initial point of occurrence.

Even if browser layer isolation is breached (for example, through a kernel vulnerability),

BT ZRKRNE

TENCENT SECURITY XUANWU LAB

infrastructure layer isolation remains effective; even if infrastructure layer configuration has
gaps, browser layer isolation can block most attacks. Combined, attackers must
simultaneously breach both lines of defense to cause substantial harm.

4.3 Other Risk Points Requiring Attention

Beyond browser vulnerability exploitation, the following risks in server-side browser scenarios
also merit attention:

Credential and Session Management: If browsers need to log into certain websites, login
credentials and cookies require proper cross-user isolation.

Resource Exhaustion Attacks: Malicious pages may exhaust resources through infinite loops
or massive memory allocations, causing denial of service. CPU and memory limits should be
set for browser containers, along with page load timeouts.

Supply Chain Security: Tools such as Puppeteer, Playwright, and Selenium also require
security updates. These dependencies should be included in vulnerability scanning and
update processes.

5. SEChrome: Xuanwu's Browser Protection Solution

We designed SEChrome, a low-cost, high-value browser runtime isolation protection solution.
This solution monitors system calls to continuously audit browser behaviors including file
access, process creation, and network requests, enabling real-time detection and blocking of
browser attacks (including 0-day exploits). Evaluation results demonstrate that SEChrome
provides broad defensive effectiveness against multiple browser attack scenarios. We have
open-sourced this solution on GitHub (https://github.com/XuanwulLab/SEChrome), hoping
to contribute to Al ecosystem security.

5.1 Solution Features

Dual-Engine Isolation

SEChrome employs a seccomp + ptrace dual-engine architecture to balance security,
performance, and environment compatibility.

Seccomp uses Linux kernel BPF functionality to filter system calls directly in kernel space, with
minimal performance overhead (<1%), suitable for high-concurrency production
environments. However, it requires containers to have CAP_SYS_ADMIN privileges and may
be restricted in some managed container services (such as AWS Fargate).

Ptrace uses the Linux process tracing mechanism to intercept and audit system calls in user
space. It requires no special privileges and is compatible with almost all Linux environments,
supporting finer-grained parameter-level auditing and logging. However, due to context

https://github.com/XuanwuLab/SEChrome

BT ZRKRNE
U

TENCENT SECURITY XUANWU LAB

switching between user space and kernel space, it has some performance overhead
(approximately 20%).

Ready to Use

The solution is provided as a wrapper layer for browser runtime. Deployment does not
depend on external network configuration, container runtime versions, or cloud platform
features. Security policies are distributed with the browser and behave consistently across any
environment.

We have also adapted the solution for Puppeteer, Playwright, Cypress, and Selenium, with
ready-to-use configuration files available in the GitHub repository's demos directory for
direct cloning and use.

Fine-Grained Permission Control

Based on the least privilege principle, the solution provides three-layer control covering
filesystem access, program execution, and network requests. Non-essential permissions are
blocked by default, with targeted interception of high-risk operations through precise system
call filtering. Path rules use allowlists (default-deny) to constrain file reads/writes and program
execution, naturally avoiding "misconfiguration = permit." Compared to relying solely on
blocklists or environment assumptions, this is easier to audit and prove permission boundaries.
The solution ensures that even if RCE or logic vulnerabilities occur within the browser,
attackers cannot obtain the critical capabilities to read/write sensitive system files or execute
malicious programs, thereby significantly reducing impact scope.

Flexible Configuration and Extension

The solution productizes browser isolation policies into a composable, reusable, and
evolvable policy system rather than a one-time "configure and forget" manual sandbox. It
uses stable policy primitives (path-level access control covering read/write/execute, syscall
rules for defining kernel capability boundaries) to express permission requirements, enabling
policies to extend via "baseline policy + scenario-specific additions”: new business
requirements typically only require adding a few allowlist or exception entries, minimizing
change scope and regression costs. Additionally, the engine provides audit logs, supporting
quantitative identification and iterative refinement of policy gaps during development, with
the refined policies ultimately migrated to execution paths for production. This design of
"same-semantics cross-engine execution + baseline reuse + audit-driven iteration”
constitutes the solution's truly sustainable extensibility.

Furthermore, based on in-depth analysis of system calls required for normal Chrome browser
operation, we have preset security policies suitable for mainstream server-side scenarios.
Policies follow the least privilege principle: permitting system calls required for normal
functionality such as page loading, JavaScript execution, DOM manipulation, and screenshots;
blocking high-risk operations such as arbitrary file reads/writes, process spawning, and
command execution. Enterprises can use preset policies directly or adjust them according to
business requirements.

BT ZRKRNE

TENCENT SECURITY XUANWU LAB

5.2 Protection Effectiveness Analysis

To evaluate the solution's protective effectiveness, we tested multiple high-severity
vulnerabilities across different modules on older Chrome versions. Our protection solution
successfully blocked all attacker attacks. The protection results for some tested vulnerabilities
are as follows:

Aff
CVEID Com;f)t:::int Impact Protection Result
Remote Started with --no-turbofan
; 1 ili
CVE-2021-30551 | V8 JIT command | PArameter; vulnerability
execution module not enabled;
vulnerability ineffective
Can only execute harmless
Remot commands on allowlist;
. crmote immediately blocked and
CVE-2021-38003 V8 Runtime command .
execution reported when attempting to
execute commands outside
allowlist
Can only read harmless files on
CVE-2023.4357 Libxslt Arbitrary | allowlist; immediately blocked
fileread | and reported when attempting
to read files outside allowlist
Can only execute harmless
Remote commands on allowlist;
CVE-2023-4863 Libwebp command | mmediately blocked and
execution reported when attempting to
execute commands outside
allowlist
Can only execute harmless
Remote commands on allowlist;
CVE-2024-10230 WebAssembl command immediately blocked and
y execution reported when attempting to
execute commands outside
allowlist

5.3 Performance Testing

To quantify the performance overhead of both isolation approaches, we conducted multiple
rounds of comparative testing based on the latest stable version Chrome/143.0.7499.146
across Chrome's three officially recommended performance benchmark platforms:

\ Benchmark seccomp ptrace Solution Overhead

BT ZRKRNE
U

TENCENT SECURITY XUANWU LAB

Solution
Overhead
hensi
Speedometer (Comprehensive 0.69% 33.10%
Performance)
MotionMark (Graphics Rendering) | 0.05% 23.72%
JetStream (JS/WASM Engine 1.82% 11.31%
Performance)

Test results show that the seccomp solution maintains near-native runtime efficiency across
all core performance dimensions, fully meeting server-side high-concurrency, low-latency
business requirements. The ptrace solution, while having some overhead in rendering and
comprehensive performance, still meets security isolation needs for medium-to-low load
scenarios and offers stronger environment compatibility without requiring special system
privileges.

6. Assessment Checklist and Implementation

Recommendations

6.1 Risk Assessment Checklist

Security leaders can use the following checklist to quickly assess their enterprise’s server-side
browser risk status:

Asset Information

® How many places in the system use server-side browsers? Does this include backend
services and non-obvious entry points?

® \What browser version is currently in use? How does it compare to the latest stable version?

® |s the browser sandbox properly enabled? Is the --no-sandbox parameter being used
anywhere?

Isolation Status

® (Can browser containers access internal network resources? Is there potential for
unauthorized lateral access?

® |s the browser container's filesystem read-only? Is the browser process running in
unprivileged mode?

® s instance isolation implemented for browser tasks to prevent data leakage and cross-
task impact?

Operational Processes
® What is the browser version update cycle? Is there risk of delayed updates?

® s there a clear security review process for configuration changes? Are there monitoring

=Rl AT A v

=
v

W=
TENCENT SECURITY XUANWU LAB

and auditing mechanisms for browser behavior?

6.2 Implementation Recommendations

Security protection for server-side browsers requires a multi-dimensional approach, with
various measures working together to form a complete defense system:

Strengthen Critical Security Boundaries: Ensure sandbox mechanisms are properly enabled
to avoid exposing browsers to high-risk environments due to misconfigurations.

Reduce Attack Surface: Reduce potential vulnerability exploitation by disabling unnecessary
functional modules and regularly updating versions.

Runtime Behavior Isolation: Restrict high-risk operations and monitor anomalous behavior
to maintain control over attack impact even after vulnerability exploitation.

Infrastructure Isolation: Build defense in depth through network, filesystem, and instance
isolation to further enhance security.

Defend Against Non-Traditional Attacks: Address hidden risks such as resource exhaustion,
credential protection, and supply chain security to prevent overlooked vulnerabilities from
becoming breach points.

Each measure is not independent but works together to build the security foundation for
server-side browsers. Enterprises should gradually improve their protection systems based
on actual circumstances, ensuring that security protection and system operational
requirements are balanced.

7. Conclusion

As critical infrastructure in Al systems, server-side browsers can lead to severe consequences
when compromised, such as controlled Al output content, poisoned Agent decision chains,
and penetrated enterprise internal networks. However, as server-side browsers have migrated
from client to server side, their role has changed significantly: browsers are no longer
individual user tools but shared components serving multiple users and tasks, running in
privileged environments and often directly connected to enterprise internal networks and
critical business systems. This change amplifies both the harm and impact of server-side
browser exploitation.

Our case studies found that enterprise-designed protection schemes (such as simple allowlist
filtering) typically have bypass risks and cannot effectively resist sophisticated attacks.
Therefore, we need a systematic set of protective measures, with key focus on:

Static Attack Surface Reduction: Following the least privilege principle to disable
unnecessary functional modules and reduce potential attack entry points.

Dynamic Behavior Auditing and Restriction: Controlling post-exploitation impact scope to
a minimum through runtime behavior control and multi-layer infrastructure isolation.

This protection framework is not only logically clear but also highly actionable, helping
enterprise security teams effectively reduce the attack surface of server-side browsers while

BT ZRKRNE
U

TENCENT SECURITY XUANWU LAB

limiting post-exploitation impact scope, laying the foundation for building comprehensive
server-side browser defense capabilities.

Appendix: Terminology

RCE (Remote Code Execution): A vulnerability allowing attackers to execute arbitrary code
on target systems.

Sandbox: An isolation mechanism that restricts program execution to a controlled
environment.

0-day Vulnerability: A vulnerability not yet patched by the vendor.

N-day Vulnerability: A vulnerability that has been patched but the system has not been
updated.

JIT (Just-In-Time Compilation): A compilation technique that improves JavaScript
performance but is often targeted for attacks.

Prompt Injection: An attack method that manipulates Al behavior through malicious prompts.
seccomp: A Linux kernel mechanism for restricting system calls.

ptrace: A Linux process tracing tool used to monitor and control process behavior.

	AI Web Crawler Security White Paper
	Abstract
	1. The Changing Threat Landscape for Browsers in AI Systems
	1.1 Changes in the Attack Landscape
	1.2 Changes in the Defense Landscape

	2. Security Risk Assessment for AI Server-Side Browsers
	2.1 Risk 1: Delayed Patch Updates and Incorrect Sandbox Configuration
	2.2 Risk 2: Multi-User, Multi-Product Shared Architecture Amplifies Vulnerability Impact
	2.3 Risk 3: Inadequate Internal Network Isolation Amplifies Attack Damage
	2.4 Risk 4: How Web Content Is Used Amplifies Attack Damage
	2.5 Risk 5: High Attack Returns Increase Attacker Willingness to Use High-Value Exploits

	3. Attack Paths and Real-World Cases
	3.1 Server-Side Browser Kill Chain
	3.2 Four Representative Cases
	Case 1: Bypassing Allowlists via URL Redirects to Achieve Remote Code Execution
	Case 2: Chaining Multiple Browser Features to Achieve Remote Code Execution
	Case 3: Bypassing Script Execution Restrictions to Achieve Remote Code Execution
	Case 4: Discovering Hidden Backend Browser Entry Points to Achieve Remote Code Execution

	4. AI Server-Side Browser Defense Strategy: From Passive Protection to Active Operations
	4.1 Attack Surface Reduction
	Disabling Unnecessary Functional Modules
	Configuration Recommendations
	Note on Sandboxes

	4.2 Limiting Impact After Vulnerability Exploitation
	First Line of Defense: Infrastructure Layer Isolation (Coarse-Grained Boundaries)
	Second Line of Defense: Browser Process Behavior Control (Fine-Grained Control)
	Coordination of Two Isolation Layers

	4.3 Other Risk Points Requiring Attention

	5. SEChrome: Xuanwu's Browser Protection Solution
	5.1 Solution Features
	Dual-Engine Isolation
	Ready to Use
	Fine-Grained Permission Control
	Flexible Configuration and Extension

	5.2 Protection Effectiveness Analysis
	5.3 Performance Testing

	6. Assessment Checklist and Implementation Recommendations
	6.1 Risk Assessment Checklist
	Asset Information
	Isolation Status
	Operational Processes

	6.2 Implementation Recommendations

	7. Conclusion
	Appendix: Terminology

